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The slope of the regression line, considering the true value and the estimated value, is often used as a 
diagnostic for conditional bias.  Ideally, the slope of this line should be equal to one, which implies 
conditional unbiasedness.  This is achieved exactly in simple kriging (SK) by reducing the variance of the 
estimates, that is, smoothing.  This is not achieved in ordinary kriging (OK) or other forms of kriging with a 
trend.  The slope can be calculated and it is always less than 1.  This note recalls the basic equations for 
calculating the slope of regression for any type of linear estimate.  Some practical consequences are 
recalled. 

Background 

Consider a regionalized variable Z.  The context for 
the “slope of regression” is estimating the unknown 
true values ZV for volume V at unsampled 
locations.  The sketch to the right illustrates the 
situation.  The estimate Z*V is the independent 
variable on the X axis because it will be known, 
but the truth ZV remains unknown. 

The mean of the true values ZV and estimated 
values Z*V are the same; virtually all estimators are 
globally unbiased.  The variance of the true values 
is larger than the variance of the estimates.  The 
degree of smoothing is a function of the continuity 
of the regionalized variable, the amount of data and 
the search strategy for estimation.  The regression 
of the true values given the estimates is an 
indication of conditional bias.  The regression line 
is an approximation of the conditional expectation, 
which, in general, will not be equal to the 1:1 45o 
line. 
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If the bivariate relationship between ZV and Z*V were Gaussian, then the linear regression would be exactly 
the conditional expectation.  The slope of the regression line is a reasonable approximation even in non-
Gaussian settings.  The slope of the regression line for ZV on Z*V is given by: 
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In simple kriging, we are estimating the residuals from the mean: 
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In ordinary kriging (or kriging with a trend), we are estimating with the original data and constraints: 
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It is well known that the estimation variance for linear estimation (any type of kriging) can be written as: 
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This can be simplified in the case of simple kriging: 

 ( ) ( )2 2

1
, ,

n

E SK i i
i

C V V C v Vσ σ λ
=

= = −∑  (3) 

In the case of ordinary kriging, the Lagrange multiplier appears to enforce the linear constraint that the sum 
of weights must equal one: 
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The sign on the Lagrange parameter μ depends on the sign written in the kriging equations.  Consistency 
must be maintained. 

The data are represented as vi, which are zi-m for simple kriging and zi for ordinary kriging at the data scale 
v for simple kriging.  The random variable is Z-m for simple kriging and the covariance function is 
representative of this residual.  The random variable is Z for ordinary kriging.  The slope is easily 
calculated with the kriging weights. 
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Note that this expression is valid for all types of kriging; however, the covariance must be the correct one 
for the type of kriging under consideration.  This equation appears to become undefined when the weights 
are all 0 (occurs in simple kriging when all of the data are beyond the range of correlation); however, the 
simple kriging case is very interesting. 

An Alternative Expression for SK 

We can take the limit of Equation 5 as the C(vi,V) values approach zero, which causes the λi values to 
approach zero.  Alternatively, we can substitute Equations 2 and 3 into Equation 5 and arrive at: 
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The slope of regression is always 1 for simple kriging!  At a data location, the slope is 1 from Equation 5 
(the weight the collocated data is 1 and all other weights are 0).  The slope is 1 when no data are correlated 
to the unsampled location (we take the limit of Equation 5 – applying L’Hopital’s rule).  From Equation 6, 
we can see that the slope is 1 all of the time.  We could have inferred this from the behavior of the bivariate 
Gaussian distribution.  We know that simple kriging has nice theoretical properties, this is another one of 
those nice properties.  The slope of regression is always 1 and, theoretically, there is no conditional bias. 



 311-3 

The slope of regression has no practical meaning in simple kriging, but the weight applied to the mean (one 
minus the sum of weights) has been used as a diagnositic.  It is a measure of the data configuration and 
smoothing: the more weight to the mean, the more smoothing. 

An Alternative Expression for OK 

Now, in the case of ordinary kriging, the Lagrange multiplier appears, see Equation 4.  The slope of 
regression does not degenerate to 1 as in the case of simple kriging.  We can substitute Equations 2 and 4 
into Equation 5 and arrive at: 
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While correct, this expression does provide great insight into how the slope of regression depends on the 
data configuration.  Most practitioners just calculate the slope and assess its value.  Experience shows that 
it is less than 1 in most cases.  We could see that from Equation 5; the denominator will increase when the 
weights are constrained to sum to one (particularly because of the direct i=j variance terms) whereas the 
numerator will not increase as much.  Of course, Equation 7 shows the same result because, m must always 
be positive (refer back to Equation 4), therefore, the slope of regression for constrained kriging (OK being 
one flavor) is always less than 1.  We could say that OK is always conditionally biased unless the solution 
degenerates to SK.  The magnitude of the conditional bias could be understood by making a map of b.  We 
know that b=1 when estimating at the data locations and b will decrease away from the data locations. 

Practical Comments 

It could be interesting to calculate the slope of regression when performing ordinary kriging or other types 
of constrained kriging; however, it is somewhat illogical.  We can always get a slope of 1 – just use simple 
kriging!  The rationale for ordinary kriging, however, is that there are departures from local stationarity, 
which can be accounted for by local estimation of the mean.  The consequence is a slope of regression less 
than 1.  It may be reasonable to check the slope of regression for different search strategies in ordinary 
kriging.  The practitioner may want the best of everything: a slope of regression near 1, local estimation of 
the mean, and minimal smoothing.  The latter two goals are in direct conflict with the first. 

The slope of regression could be calculated in expected value given the theory, see Equation 5, and/or from 
cross valiation.  Given that theory may not match practice, it would be reasonable to do both. 

In simple kriging, we sometimes report the sum of the weights (or 1 minus the sum of weights), which acts 
as a diagnositic of how much smoothing is taking place.  The weight to the mean is 1 minus the sum of 
weights. 

Comments on Conditional Bias 

Our concern with the slope of regression is conditional bias (refer back to the background on the first page).  
Conditional bias is a serious problem if the estimate is going to be used for a final or near-final decision, for 
example, for grade control in open pit or for stope estimates in underground.  It would be a serious mistake 
to have a known bias in estimates used for final decision making. 

On the other hand, we may be interested in estimates for interim planning purposes, that is, final estimates 
will be calculated in the future with additional information.  We may accept conditional bias in interim 
estimates if the estimates have more desirable properties.  The most common desirable property to have is 
a reasonable estimate of global reserves.  Kriging with sparse data will lead to estimates that are overly 
smooth.  A greater amount of higher and lower final estimates will be calculated when the final information 
is obtained.  Thus, it may be a serious mistake to use smooth conditionally unbiased interim estimates for 
planning; we should anticipate the information available in the future. 

In general, there is no universal best estimator.  “best” must be defined for each situation.  The debate 
should turn from conditional bias to the purpose of the estimate and the goals of the study. 
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